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In KMA we are using both statistical and dynamic models for the long-range weather 

forecast. The dynamic ensemble forecast became the primary tool since we started using new 

supercomputer since June 1999.  

 

1. Dynamic Models 

KMA has a global spectral model with horizontal resolution of T106 and 21 vertical 

levels with 10hPa of P-top for operational long-range forecast. The boundary condition over 

the ocean is fixed throughout the forecast period with the latest weekly SST anomalies added 

to the monthly AMIP climatology. Initial soil moisture, initial snow depth, roughness length 

and albedo are climatological. This model uses Kuo (1974) scheme for cumulus 

parameterization, Mellor and Yamada (1982) scheme for PBL and SiB model (Sellers et al., 

1986) for land surface process. 

We developed a new long-range forecast model with the same dynamics as the 

operational model, but different physics to improve predictability of East Asia precipitation. It 

has been conducted together with Seoul National University research team. The main 

differences between operational model and experimental model are shown in this table. 

 

Table 1. Comparison of main physical processes between operational and experimental model 

 Operational model Experimental model 

Cloud Convection Kuo (1974) 
Simplified Arakawa-Schubert,  
Diffusion type-Shallow Convection, 
Le Treut & Li (1991) 

Land Surface & 
PBL 

SiB; 
Yamada-Meller (1982) 

LSM (Bonan,1996);  
Non-local PBL/Vertical Diffusion 
(Holtslag & Boville, 1993) 

Radiation 

Lacis & Hansen (1974) for SW, 
Roger & Walshaw (1966); 
Glodman & Kyle (1968); 
Houghton (1977) for LW 

Nakajima & Tanaka 
(1986, 2-stream k-distribution 
radiation scheme) 

 

1.1 Model Operation 

Lagged Average Forecast (LAF) method is applied for ensemble prediction with 

different initial conditions produced by our global analysis and prediction system. The 

number of ensemble members is 20 with 12-hr initial conditions using. 



The operational model integration is performed everyday for 130 days. We produce 1-

month forecast every 10 days with 1 week of lead time, and seasonal forecast with 1 month of 

lead time four times a year. KMA has issued 6-month forecast since 2001. For 6-month 

forecast, We perform the model integration for 7 months two times a year and produce it with 

1 month of lead time. 

 

1.2 Supercomputer of KMA 

KMA's Main computer system for operational weather forecasts is NEC SX-5, which is 

a parallel vector processor machine with 2 nodes connected by Internode Crossbar Switch. 

Two nodes consist of 28CPUs, 16 and 12 CPUs each, and performance of each CPU is 

8GFlops, so all together 224GFlops. SX-5 has main memory of 224GB and 4.5TBl disk size. 

Currently, SX-5 can accommodate operational model runs for short-term, medium and 

long-range weather forecasts, and some research and development for operational models. 

 

1.3 Model Results 

The operational model results of temperature, precipitation, geopotential height, sea level 

pressure and Moisture flux for 1-month and seasonal forecasts are provided in KMA internet 

homepage at: 

 

http://www.kma.go.kr. 

 

KMA also produce probability charts of temperature and precipitation which are very 

reliable and effective to predict events or intensity that we can hardly forecast with averaged 

fields (Fig. 1).  
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Fig. 1.  Precipitation Probability for 2001 summer forecast (above) and 

   Temperature Probability for 2002 summer forecast (below). 

 

 

2. The Structure of El Nino Prediction Model 

For the tropical SST prediction, KMA is using Intermediate dynamic El Nino prediction 

model which is similar to, but improved, Cane-Zebiak model (Zebiak and Cane, 1987). This 

model has a simple statistical atmosphere interfaced with the tropical ocean dynamic model 

which interact through SST and wind stress. SST is determined by two terms, horizontal 

temperature advection and upwelling. The upwelling term is a function of vertical 

temperature gradient, which is one of the most challenging term to calculate in simple ocean 

models. The vertical temperature gradient is obtained from the difference between 

temperatures at the surface and sublayer. Once SST is determined, the wind stress is 

computed statistically to give a forcing to the ocean model (Fig. 2). 

Since this model is not fully coupled, determination of wind stress is problematic in 

many simple El Nino prediction models including CZ type model. So we introduced simple, 

but more reliable way of computing wind stress using simple statistics. We computed Singular 

Value Decomposition (SVD) using observed SST anomalies and observed wind stress, and 

used two primary modes in the transform function. Therefore, ocean model gives the surface 

ocean temperature anomaly information, it is transformed to provide wind stress by the simple 

statistical transformation (Fig. 3). 

KMA has improved the El-Nino prediction model by changing the subsurface 

temperature parameterization (Kang and Kug, 2000). The parameterization of subsurface 

temperature is replaced by a statistical relationship constructed based on SVD of the 20℃ 

isotherm depth and the water temperature at 45m depth from the NCEP ocean assimilation 

data. As a result, the predictability has been improved by replacing the computation of 

subsurface temperature from hyperbolic tangent function to empirical method. This result is 

verified by model run for 20 years from 1980 to 1999. It is available on the KMA Internet 

homepage. 



KMA also improved the model by using NCEP reanalysis instead of FSU data for initial 

wind stress. A historical wind stress data was obtained based on the 925hPa winds of NCEP 

reanalysis data and was compared to the FSU wind stress. The time evolution of FSU zonal 

wind stress along the equator is compared to that of the NCEP zonal wind stress. The hindcast 

experiments are carried out with the same ocean model but with the two different sets of wind 

stress data for the period from January 1970 to December 1999. 

The prediction experiments with an intermediate ocean and statistical atmosphere model 

indicate that the prediction skill of the tropical Pacific SST with the NCEP wind stress data is 

better than that of FSU wind stress for the period of 1980-1999 (Figs. 4b and 4c). The NCEP 

reanalysis wind stress is used for the initialization of the intermediate El Nino prediction 

model, and the forecast skill is improved compared to that using FSU wind stress (Fig. 5). We 

emphasize that this does not necessarily imply that NCEP wind stress is closer to truth than 

the FSU wind stress. However, the NCEP wind stress is most likely better balanced with the 

large scale SST forcing because of the model-based assimilation system with observed SST 

forcing that is used to produce it. This balance can be important for prediction with 

intermediate models in particular. 

The improved model results for 6-month predictions of tropical SST anomaly, 

thermocline depth, and Nino 3 index are provided on the KMA Internet home page. 
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Fig. 2.  Structure of El Nino prediction model. 
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Fig. 3.  Structure of the statistical atmosphere of El Nino prediction model. 

 

 

 

Fig. 4.  (a) NCEP SST anomaly along the equator. (b) and (c) are intermediate model SST 

simulations with (b) FSU and (c) NCEP wind stress. Contour interval is 0.5℃, 

positive and negative values are plotted by the solid and dash lines, respectively. 

Shading indicates values more than 0.5℃. 



 

 

Fig. 5.  Correlation coefficient between the model forecast and observed NINO3 SST, as a 

     function of lead time, for the verification periods (a) 1980-99 and (b) 1992-1999. 

 

3. Regional Climate Prediction System 

KMA has a plan to construct the regional climate prediction system which consists of 

two sub-systems. The statistical prediction system was constructed with 4 statistical models 

and is operationally used for seasonal forecast. 

The dynamical-statistical prediction system is currently under development by KMA and 

SNU. In this system, global prediction is produced using multi-model ensemble with the 

prediction results of AMIP type and SMIP type. For this job, we are carrying out SMIP 

(Seasonal prediction Intercomparison Project) program for winter and summer period to 

obtain better climatology. 

The regional prediction is also produced through statistical downscaling using Coupled 

Pattern Projection Model. And then, ensemble results from both systems are merged using 

super-ensemble technique and finally optimized regional climate prediction is produced. 
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Fig. 6.  Structure of Regional Climate Prediction System 
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